
~ )  Pergamon 
Int. J. Heat Mass TransJer. Vol. 41, No. 1, pp. 89 99, 1998 

(£; 1997 Elsevier Science Ltd. All rights reserved 
Printed in Great  Britain 

0017 9310/98 $19.00+0.00 

PII : S0017-9310(97)00092-6 

Numerical simulation of melting of a horizontal 
substrate placed beneath a heavier liquid 

G. SON and V. K. DHIR 

Mechanical and Aerospace Engineering Department, University 
Angeles, CA 90095, U.S.A. 

of California, Los Angeles, Los 

(Received 26 September 1996 and in final form 21 March 1997) 

Abstract--In this work, the melting of a horizontal substrate placed beneath a heavier liquid is simulated 
numerically. A finite difference method is used to solve simultaneously the equations governing the 
conservation of mass, momentum and energy in the liquid liquid layers. The equations for the two phases 
are coupled through the matching of normal and tangential stresses and continuity of mass at the interface. 
A second-order projection method is employed for decoupling velocities from pressure. A numerical grid 
generation method is used to construct a grid system, which is aligned with the interface. The numerical 

results are compared with experimental data reported in the literature. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The behavior of the interface between horizontal lay- 
ers of a heavier liquid overlying a lighter fluid is gov- 
erned by Taylor instability. The concept of this insta- 
bility has been applied in the past to analyze a variety 
of physical phenomena, such as film boiling, 
maximum and minimum pool boiling heat fluxes, con- 
densation on the underside of a surface and melting 
or sublimation of a substrate placed beneath a pool 
of heavier liquid. 

Zuber [1] was the first to apply the concept of 
Taylor instability to predict maximum and minimum 
heat fluxes for pool boiling. He proposed that vapor 
bubbles were spaced a distance bounded between the 
two-dimensional 'critical' and 'most dangerous' 
Taylor wavelengths. Considering that two bubbles 
were released per cycle from a square cell, he predicted 
the minimum heat flux. 

Subsequently, Berenson [2] obtained an expression 
for the heat transfer coefficient during saturated film 
boiling on horizontal surfaces. Berenson assumed that 
vapor bubbles were placed on a square grid with a 
spacing equal to the two-dimensional 'most danger- 
ous' Taylor wavelength, 2d2, and a thin vapor film of 
uniform thickness connected the neighboring bubbles. 
By further assuming that mean bubble height and 
bubble diameter were proportional to the bubble spac- 
ing, and two bubbles were supported per 222 area of 
the heater, he predicted the film boiling Nusselt num- 
ber based on average heat transfer coefficient as 

l '/8 
Nu = 0.42 L L~-Yf J Lg(p,-pOJ " (1) 

In equation (1) all of the properties were evaluated at 
the mean film temperature. Equation (1) was derived 

from a static model which did not account for the 
time variation of the bubble height or bubble diameter 
and the flow field in the liquid. Heater surface tem- 
perature was assumed to remain constant with time 
and space. In reality the interface is dynamic and 
temperature and local heat flux can vary during the 
evolution of the interface. The predictions from equa- 
tion (1) were, however, found to compare well with 
Berenson's data. The two-dimensional (2-D) wave 
configuration used by Zuber and Berenson was 
improved by Sernas et al. [3] while carrying out three- 
dimensional (3-D) Taylor instability analysis. They 
showed that using the 3-D Taylor wavelength, 2d3, 
which is x~2 times larger than the 2-D Taylor wave- 
length, four bubbles were released per cycle on 2~3 
area. Therefore, two bubbles are indeed generated per 
cycle on 222 area. However, at any instant there is only 
one bubble per 222 that is growing. 

Dhir et al. [4] studied pseudo film boiling during 
sublimation of a slab of dry ice placed beneath a pool 
of warm liquid. The heat transfer rate was determined 
by noting a change in the enthalpy of the overlying 
liquid pool. Data were found to compare favorably 
with the prediction from an equation similar to equa- 
tion (1) when the lead constant was reduced to 0.36. 
It was argued that a reduction of about 15% in the 
lead constant resulted from the fact that during sub- 
limation only one bubble was supported per 222 area 
instead of 222/2 as assumed by Berenson. This was 
based on their experimental observation that the bub- 
bles were released from the same location rather than 
alternately from nodes and antinodes as observed dur- 
ing film boiling on flat plates or during early period 
of sublimation. Subsequently Taghavi-Tafreshi et al. 
[5] studied melting of a slab of frozen olive oil placed 
under a pool of water and again found their data 
to correlate well with predictions from an equation 
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NOMENCLATURE 

C differential operator with convection 
terms 

cp specific heat at constant pressure 
g gravitational acceleration 
h heat transfer coefficient 
hfg latent heat of evaporation 
hr~ latent heat of fusion 
J Jacobian of transformation, 

x~y~- x,y~ 
k thermal conductivity 
L differential operator with diffusion 

terms 
l0 characteristic length, x/7/g(P2 - P t ) 
M, N differential operator with pressure 

terms 
N u Nusselt number, hlo/k 
Nu Nusselt number averaged over a cell 

area 
Nu Nusselt number averaged over a cell 

area and time 
control functions for grid generation 
dimensionless pressure 
pressure correction 
Prandlt number for fluid 1, c p l # l / k  I 
dimensionless radius 
dimensionless cylindrical coordinate 
Reynolds number, piuolo/l~i 
source term 
temperature 
temperature difference, Tint- T~olid 
dimensionless time 
characteristic time,/x~0/9 
dimensionless velocities in r- and y- 
directions 

tT, g dimensionless contravariant velocity 
components 

/~0 
U0 

characteristic velocity, 
dimensionless blowing velocity. 

Greek symbols 
7 surface tension 

dimensionless film thickness 
60 dimensionless undisturbed film 

thickness 
q,~ transformed coordinates 
0 dimensionless temperature 

dimensionless interfacial curvature 
2d2 two-dimensional 'most dangerous' 

wavelength 
;td3 three-dimensional 'most dangerous' 

wavelength 
# viscosity 
p density 
~r dimensionless viscous normal stress 
r dimensionless shear stress 
~b general dependent variable 
~z) growth rate corresponding to 2~2. 

Superscripts 
n time step of nat  
^ property ratio of fluid 1 to fluid 2. 

Subscripts 
i l, 2 for fluid l and fluid 2 
int fluid-fluid interface 
l, v liquid, vapor 
r, y partial differentiation with respect to 

r, y 

solid solid surface 
t partial differentiation with respect to t 
~, q partial differentiation with respect to 

~,~. 

similar to equation (1). However, the lead constant 
had to be reduced by almost a factor of 2. The 
reduction in the lead constant was rationalized on the 
basis that growth rate of the melt droplets was very 
slow and the time averaged height of the droplets was 
much smaller than that of a bubble in film boiling. 
This reduction in lead constant suggests that density 
difference between the phases or components is an 
independent parameter in addition to the ther- 
mophysical properties already contained in the 
expression given by equation (1). 

Taghavi-Tafreshi and Dhir [6] performed gen- 
eralized linear Taylor stability analysis that included 
surface tension, viscosity and layer thickness. They 
applied the linear analysis to a variety of two-phase 
processes and compared the 'most dangerous' wave- 
lengths predicted theoretically with the available 
experimental data. It was found that during film boil- 

ing the thickness of vapor layer did not affect the 
'most dangerous' wavelength, whereas during melt- 
ing, certain combinations of liquid layer viscosity and 
thickness could reduce the 'most dangerous' wave- 
length predicted from inviscid infinite layer analyses. 
They also noted that the observed growth rate of the 
interface was lower than that predicted from the linear 
Taylor instability theory. However, in the absence 
of a quantitative basis for the determination of the 
average film thickness they did not provide an expla- 
nation for the difference. 

The correlation of Berenson is useful for engin- 
eering applications. However, the correlation con- 
tributes little to our understanding of the process. As 
such the purpose of this work is to solve numerically 
conservation equations of mass, momentum and 
energy for the liquid-liquid phases during melting 
process. These equations when solved with appro- 
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priate interfacial and boundary conditions will also 
provide a numerical simulation of the evolution of the 
interface with time. The results of the analysis will 
yield the rate of heat transfer in the film and droplet 
regions as well as help delineate the validity of the 
assumptions made in the various analyses. 

ANALYSIS 

Figure 1 shows the configuration used in this study 
to simulate the instability of a horizontal liquid layer 
between the surface of a melting solid and a large 
finite layer of warm liquid above. The computation is 
restricted to 2-D incompressible, and laminar flow 
which is described in axisymmetric radial coordinates. 
This axisymmetrical approximation may not be so 
restrictive and has been verified from the experimental 
observation of the liquid bulges associated with melt- 
ing [5] and of vapor bubbles during film boiling [2]. It 
is further assumed that the solid and the interface are 
maintained at their specified temperature. 

In carrying out numerical simulation characteristic 
length, 10, characteristic time, to and characteristic vel- 
ocity, u0, are defined as 

7 77 ,0 10= 7 " t0=  u 0 = - - .  (2) 
g(P2 - P 1)'  ' to 

Also, vapor and liquid pressures are non- 
dimensionalized with pvU 2 and p~u2o respectively and 
dimensionless temperature is defined as 

T-- Tsoli d 
0 (3) Tim- Tsoli d ' 

In dimensionless form the equations governing the 
conservation of mass, momentum, and energy for 
liquid 1 and liquid 2 are written as 

(ru,), + (rVi)y = 0 

D t  - Pir-}- ~ie i V2Ui-- 

(4) 

(5) 

Dvi 1 2 
-- p,, + w - V  v, ( i = 1 , 2 )  (6) 

D t  

DO 1 

D t  P r R e  1 
V20 (7) 

where p is a pressure modified to remove the body 
force term in the momentum equation and for general 
dependent variable, ~b, which represents dependent 
variables, u, v, p and 0, the total derivative and the 
Laplacian can be written as 

D~b 
D ~  = qS , + u dpr + v d? ,, (8) 

1 
V2~b -= 7(rq$,), + ~byj (9) 

also 

Rei = piu°l° ," Pr  - -  CpI#I 
#i k l  

Since two-phase flow with a complex interface is 
difficult to solve in (r,y) coordinates, the following 
coordinate transformation is used : 

Fluid 2 I n t e r f a c e  6=6(r ,y , t )  

Fluid 1 
r "iliilllllllllllllllllllllllllllllll~llJlllllllllllllllllllllilllliiili, 

Solid 

(a) 

/D © 

(b) 

Fig. I. Configuration of two layers for melting : (a) side view ; and (b) top view for one cell. 
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= ~(r,y,  t) ; r I = rl(r,y, t) (10) 

where the interface is described by q = constant. 
Using the chain rule o f  partial differentiation, the gov- 
erning equations are transformed as : 

(ry~ -- rr~v)¢ + (rr~v -- ryeu)~ = 0 (11) 

rJu ,+rJpr  = L ( u ) - C ( u ) +  S.  (12) 

r Jr, + rJp,, = L(v)  - C(v) (13) 

rJO, = Pr  ' L ( O ) - C ( O )  (14) 

where 

J = rcy~ -- r,y~ 

L(c~) = R e . ~ j V 2 ( ~  

C(dp) = [ry, ( u -  r,) - rr, ( v -  y,)] q5¢ 

+ [rr~ (v - y,) - ry~ ( u -  r,)]q~, 

S.  = - (Reir) - 1Ju. 

In this study, a staggered grid system is used in which 
the locations for velocity components are displaced 
from those for pressure and temperature. This is done 
to avoid the difficulty caused by pressure boundary 
conditions. Also, contravariant velocity components 
which are naturally dependent variables describing the 
continuity equation are used as dependent variables. 
They are defined in this study as 

1 ( r~r,+y~y¢ ~ ) 
N ( p )  = ~ J p~ + p~ 

x~ r~ # y~ 

S'~ = - L ( F t ) -  r" [ L ( v ) + r J  v 2 A t  -- C(u) 
x/  r, + Y, 

+ ~ L(u)  + rJ - C(u) + S~ 
2 2 AI  x/  r, + Y, 

r~ U ] 
S,, = - L(~) + -  ~ ~L(v) + r J w  - C(v) 

, / 4  + y~ k at 

Y¢ [ L ( u ) + r J ~ t - C ( u ) + S , ]  

where superscript n and n+~ represent n and n +  1 time 
steps respectively and geometric functions are evalu- 
ated at the current time step. In order to obtain gov- 
erning equation for pressure which achieves mass con- 
servation, the fractional-step method, or projection 
method, is used. This method has been developed by 
Chorin [8], Kim and Moin [9], Bell et al. [10], Rosen- 
feld et al. [l 1] and Jin and Braza [12]. Using con- 
travariant velocities as dependent variables, Rosen- 
feld et al. applied the fractional-step method to 
generalized coordinate systems. A variation of that 
method is used in the present study. 

0~+~ _ 0  ~ 
rJ At  - Pr ~L(O"+~)+S~ (18) 

y . u -  r~v - y¢u + r¢v 
a = - -  9 =  (15) 

2 2 '  x/r~ + Y  2 

The governing equations for contravariant velocity 
components are obtained by following the procedure 
similar to that used by Karki and Patankar [7]. First, 
the differential equations for cylindrical velocity com- 
ponents which are supposed to be located at the same 
grid points with contravariant velocity components 
are discretized spatially using central difference 
scheme. Thereafter, the discretized governing equa- 
tions for contravariant velocity components are 
obtained by algebraic manipulation. When dis- 
cretizing governing equations temporally, the 
diffusion terms are treated by fully implicit scheme 
and the convection, grid curvature and source terms 
by first-order explicit method. The discretized gov- 
erning equations are expressed as 

fl~+l 
rJ  At  = - r J M ( P " + ~ ) + L ( ~ - I ) + S ' ~  (16) 

rJ At = -rJN(pn+I)+L(g"+J)+S~'~  (17) 

where 

M ( p )  - 

rJ At  = - r J M ( p " ) + L ( a * ) + S " ~  (19) 

r J ~ t  = - r J N ( p " ) +  L(~*) + S~ (20) 

a "+' = a * - A t M ( p ' )  (21) 

tT"+~ = 9" - AtN(p ' ) .  (22) 

The momentum equations are decomposed into two 
fractional steps. First the momentum equations (19) 
and (20) are solved using pressure evaluated at the 
previous time step. Then, the resulting velocities, iT* 
and ~*, which do not satisfy the continuity equation, 
are corrected as given by equations (21) and (22). A 
pressure correction, p' ,  is estimated as : 

p, , . t  = p,, +p ,  + O(p 'At ) .  (23) 

Using equations (21). (22) and continuity equation 
(11), the governing equation for pressure correction 
is obtained as 

l 2 2 - *  ~ 2 2 1 ] *  rJVZp ' =  ~ [ ( 7 ~ u  ) ~ + ( Y ~  ),]. 

(24) 

At the interface, the matching conditions for vel- 
ocities and stresses are 
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u2--ul = 0 

v 2 --V] = 0 

1 
~27 2 - -T I ~ 0 
# 

~ p 2 - p ,  = a2-a~  + (y--~) .  (25) 

In the above equations 

p~ /-/] ~ = - - ;  ~ = - -  
P2 P2 

r~ +y~r¢u, +y~v, r~v¢ --yeu~ 
z =  + - -  

J r~ +y~ r~ +y~" 

j 2 2 
re + Y~ 

2u 2(r~u~ + y~ve) 
0 ~  

r 

h" = r~y~ --y~r~ y~ (26) 
(r  2~ q_y2) 3 /2¢  rx/r ~ +y~" 

Since it is assumed that the interface is maintained at 
its specified temperature, 

At the solid surface 

0 = 1. (27) 

u=O 

CplAT 0y 
v = vo hf~Prl Re1 

0 = 0. (28) 

Considering the blowing velocity, v0, the melting sur- 
face is treated as stationary instead of moving. This 
replacement gives little difference to the liquid-liquid 
interface behavior because the melting rate of the solid 
surface is much smaller than the growth rate of the 
liquid-liquid interface. At the locations of symmetry 
with respect to y-axis and the centerline, 

u = v~ = 0~ = 0. (29) 

Far  away from the interface, 

uy = v.,, = 0. (30) 

After solving for the temperature and flow field, the 
interface is advanced in an explicit manner : 

r ~ ~ = r " + A t ~  (31) 

7 +' = y" +Aty7 (32) 

where r, and y, are r- and y-directional components of 
the normal interfacial velocity and are expressed as : 

Y~gl r~lTj 
r , ~ - - ,  y, (33) 

,/(rg+yg) 

When the interface is deformed significantly, the 
interior grid points are difficult to determine algebra- 
cially. As such a grid system aligned with a complex 
interface is generated numerically by solving Poisson's 
equations [13]. The grid generation equation is 

V2~ 2 2 _~_ 2 = P(~r + { v ) ;  V27/ = O(t/r 2 r/v) (34) 

where P and Q are functions which control the spacing 
and curvatures of t/ and ~ grid lines. Without the 
control functions, the interior grid points would be 
uniformly spaced away from the boundary regardless 
of the boundary grid point distribution because of the 
strong smoothing tendencies of Laplace equations. 
The control functions, P and Q, are evaluated in the 
same manner as was done by Thompson [14] and 
Thompson et al. [13]. They are expressed as: 

P -  r~r~ + y~y~ ~ y ~ r ~ - r , y ~ ,  
r~+y~ x/r~+Ye (r~+y~) ~' 

(35) 

r¢y¢¢ -- y¢r¢¢ Q _ r~r~ + y~y~ ,,/r; I -t- Y;7 
+ (r~ + y~)"" 

D 

(36) 

The first and second terms of equations (35) and (36) 
control the spacing and curvatures of grid lines, 
respectively. These functions are evaluated at the 
boundary first and are then interpolated linearly into 
the computational domain. 

In this study, the discretized equations are solved 
iteratively by a line-by-line tridiagonal-matrix algo- 
rithm supplemented by Gauss-Seidal method which 
was suggested by Patankar [15]. To enhance the rate 
of iteration convergence, a relaxation factor obtained 
from orthogonal-residual method [16] is used. During 
computations, the optimal relaxation factor enhanced 
the rate of iteration convergence significantly com- 
pared with the initially specified and fixed relaxation 
factor. 

RESULTS AND DISCUSSION 

The instability of the horizontal liquid layer 
between the surface of a melting solid and a large 
finite layer of warm liquid supported above the sub- 
strate was simulated. Symmetry was assumed to exist 
at r = 0 and at r = R = ~.dZ/N/~. The latter condition 
corresponds to the assumption that one liquid droplet 
is released per 222 area of the melting surface per cycle 
[Fig. 1 (b)]. In order to be able to compare the numeri- 
cal results with the data of Taghavi-Tafreshi et al. [5], 
the solid was taken to be frozen olive oil, and the 
overlying liquid layer to be water. The 'most danger- 
ous' wavelength, 2d2, can be obtained from generalized 
linear stability analysis that include surface tension, 
viscosity and layer thickness. During numerical simu- 
lation, ~i~2 is set equal to 9.33, which is corresponding 
to the 'most dangerous' wavelength for 60 = 0.5. This 
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Table 1. Dependence of 2d2 and o) on the melt layer thickness 
predicted from the linear stability analysis 

6 0  "~d2 ( ~  

1.00 10.1 3.59x l0 2 
0.50 9.33 7.66 x l0 3 
0.40 9.18 4.22x 10 3 
0.35 9.12 2.92x 10 3 
0.30 9.06 1.89 x 10 -3  

0.10 8.91 7.53 x 10 -5 

approximation is deemed reasonable for a thin melt 
layer (60 ~< 1) because the variation of  the 'most  
dangerous'  wavelength with 60 is small as shown in 
Table 1. 

Figure 2 shows the evolution of  the l iquid-liquid 
interface for T , . t -  Tso,~ of  17.5°C. Here, the peak is at 
r = 0 and the valley is at r = R. A comparison of  the 
evolution of  the peak and valley regions indicates that 
the growth of  the interface in the peak region is much 
more pronounced than the downward movement  of  
the interface in the valley region where the interface 
movement  is retarded by the presence of  the melting 
surface. After the peak attains an amplitude of  about 
two, its growth rate accelerates with time. It is caused 
by the squeezing effect which results mainly from the 
circumferential component  of  surface tension. In 
equation (26), the radially inward component  of  cir- 
cumferential surface tension (the second term) is 
y~/r(r~ +y~) and it becomes important  as the inter- 
facial slope, y¢, becomes steep. The surface tension 
pushes the interface toward the centerline and in turn 
pushes up the peak out to conserve mass. Therefore, 
a narrow and straight liquid stem is formed near the 
centerline. The front of  this stem widens due to inter- 
facial drag and eventually acquires a spherical shape 
because of  surface tension. 

1.0 ' ' I ' ' ' I ' ' ' I ' ' ' 

0.8 ,o ~ ~ ~ t'- 

0.6 

0.4 

0.2 

0 . 0  ' , I , , , I I ' 

- 0 . 0 8  - 0 . 0 6  - 0 . 0 4  - 0 . 0 2  0.00 

12 
Fig. 3. Radial velocity profiles at t = 415 for AT = 17.5~C. 

The radial velocity profiles in the thin film region 
are plotted in Fig. 3. The velocity increases gradually 
as the radius decreases, which results from the increase 
in the flow rate due to melting upstream. The velocity 
condit ion at the l iquid-liquid interface is closer to 
slip condition rather than no-slip condition, which is 
expected from the fact that water viscosity is much 
smaller than olive oil viscosity. This is different from 
that for film boiling, where the velocity condition at 
the vapor- l iquid interface is close to no-slip condition 
rather than slip condition. 

Dependence of  Nusselt number on radial position 
is plotted in Fig. 4 for several dimensionless times. 
Here, the Nusselt number based on local heat transfer 
coefficient from the warm pool to the interface is writ- 
ten as 

Fig. 
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Fig. 4. Variation of Nusselt number with radial position at 
different times during the first computational cycle of melting 

for AT = 17.5°C. 
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N u -  "¢ ~ "~ 0 , .  (37) 
J 

Most of heat is transferred in the thin film region. 
Under the droplet, little heat transfer takes place. 
Initially, the maximum rate of heat transfer takes 
place near the plane of symmetry (r = R). The 
location of maximum heat transfer coefficient moves 
radially inward with time, while during later periods 
of interface growth a large increase in the magnitude 
of the maximum heat transfer coefficient is observed. 
The heat transfer under the droplet is reduced with 
time because the liquid-liquid interface of the droplet 
moves upward. 

As shown in Fig. 2, at the later stage of growth a 
narrow and straight liquid stem with a spherical head 
is formed near the centerline. This indicates that drop- 
let breakoffis imminent. To simulate the cyclic melting 
process, the liquid stem is assumed to pinch off near 
the location with thinnest neck. Thus, the interface 
shape just after droplet breakoffis chosen as the initial 
condition for the numerical simulation for the next 
cycle. This computation is repeated over several cycles 
until no change in the evolution of the interface from 
cycle to cycle is observed. The dimensionless ampli- 
tudes of the interface at the peak during several con- 
secutive computational cycles are plotted in Fig. 5 as 
a function of dimensionless time. The amplitude of the 
interfacial disturbance during the first cycle is strongly 
influenced by how the interface is disturbed initially. 
After several computational cycles, the profile for the 
disturbance amplitude attains an asymptotic shape. 
The profile of disturbance amplitude during the fifth 
cycle is nearly identical to the profile for the sixth 
cycle. Therefore, the interface behavior independent 
of initially specified conditions can be considered to 
be described by the profile for the sixth cycle. Just 
after the liquid droplet pinches off, the interface in the 

1 

id 

i0 -i 

I " '  ' i  ;,>U/i/_4/,; ~ ( 6 )  . 

~ :  2 .21X I 0  -a  

"(11 

10 -2 I I , I , I , I , 

0 1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  

L 

Fig. 5. Variation of disturbance amplitude with time for 
AT= 17.5"C. 

peak region drops down rapidly because of restoring 
force due to surface tension. After the interface drop 
off period and period of zero growth rate, the dis- 
turbance is seen to regrow exponentially. Unlike the 
prediction from the linear stability analysis, the slope 
is seen to slightly vary with time. This is caused by a 
slight variation in the average film thickness during 
the evolution of the interface. Generally, the thicker 
layers lead to increased growth rate. For the asymp- 
totic case, the rate of growth of amplitude in the 
exponential region is about 2.21 x 10 3. This is 11% 
smaller than that observed by Taghavi-Tafreshi e t  al .  

[5]. The existence of the exponential growth rate dur- 
ing the period the peak of the evolving interface attains 
a substantial height can be explained if one compares 
from the numerical simulation the magnitude of vari- 
ous terms in the momentum equations. It is found 
that during the exponential growth period the 
diffusion and pressure terms dominate the convection 
terms (nonlinear terms). However, this period ter- 
minates when the convection terms in the droplet 
region have the same order of magnitude as the 
diffusion and pressure terms, which happens to occur 
during the indefinite growth period. During the period 
prior to droplet breakoff, the growth rate increases 
indefinitely due to the enforcement of the cir- 
cumferential surface tension to the instability effect of 
buoyancy force. This indefinite growth phenomenon 
was also observed in the experiments by Taghavi- 
Tafreshi e t  al .  [5]. 

Table 1 lists the 'most dangerous' Taylor wave- 
length, 2d2, and the corresponding growth rate for 
different melt layer thicknesses as obtained from lin- 
earlized 2-D stability analysis. It is noted from Table 
1 that for thin film (50 ~< 1), a reduction in film thick- 
ness has a more pronounced effect on the growth rate 
than it has on the 'most dangerous' wavelength. In 
order to compare the growth rate obtained from the 
numerical calculation when the interface grows expo- 
nentially with that obtained from the linear stability 
theory, a mean film thickness must be defined. 
However, because of the temporal and spatial vari- 
ation of film thickness during melting, it is difficult to 
define a mean thickness. Nevertheless a value of the 
effective mean thickness can be determined by mat- 
ching the growth rate obtained from the numerical 
simulation with that obtained from the linear stability 
theory. From Table 1 it is found that for A T = 17.5'C, 
the effective mean film thickness corresponding to the 
growth rate of 2.21 x 10 3 is 0.32. 

Figure 6 shows the evolution of the interface during 
the sixth computational cycle. It is found from Fig. 
6(a) that after the droplet is departed the interface 
drops down rapidly. This is caused by the fact that 
when the droplet is removed from the interface the 
buoyancy force is also reduced. The dominance of 
surface tension over buoyancy force pushes down the 
interface at the peak. It is interesting to note that 
while the interface is restored by surface tension, the 
interracial motion is restricted over the region r < 3.8, 
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Fig. 6. Evolution of the liquid-liquid interface during the sixth computational cycle of melting for 

AT = 17.5°C. 

which corresponds to half the critical wavelength for 
axi-symmetric flow [17]. After the interface at the peak 
falls back to a value of 1.44, it again begins to move 
upward due to the unbalance that develops between 
buoyancy force and surface tension with additional 
melting. Evolution of the interface with time is shown 
in Fig. 6(b). During the period from 50 ~< t ~< 87 the 
growth of the interface is too small to be plotted in 
Fig. 6(b). This is the period of nearly zero growth rate 
of the interface. Thereafter, little change occurs in the 
valley region (r > 3.8) whereas the interface in the 
peak region grows significantly. The interface shape 
at t = 461 almost overlaps the initial interface at t = 0 
in Fig. 6(a) except in the droplet region which was 
assumed to have pinched off. Because of the similarity 
of the interfaces pre and post pinch-off it can be con- 
cluded that the cyclic evolution of the interface has 
been simulated. Through cyclic simulation it is found 
that the droplet always forms at the same position 
(r = 0), which is different from film boiling where the 
bubbles form alternatively at nodes and antinodes. 
During melting the long and straight liquid stem that 
remains after droplet pinch-off is high and wide 
enough for regrowth even though the stem height is 
reduced somewhat during the short period post drop- 
let pinch-off. 

Nusselt numbers based on heat transfer coefficient 
averaged over the cell area are plotted in Fig. 7 for 
several cycles. It is seen from the curve for the first 
cycle that just after sinusoidal perturbation of the 
interface, the heat transfer rate increases slowly. This 
is due to the fact that the growth rate of the interface 
disturbance is small. Thereafter, as the interface evol- 
ves, the increase in the heat transfer rate accelerates. 
The Nusselt number for the first cycle is much smaller 
than that for the subsequent cycles. This indicates that 
the thickness of the melt layer specified for the first 
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Fig. 7. Nusselt numbers based on heat transfer coefficient 

averaged over the cell area for AT = 17.5~C. 

cycle is excessively high. Through several com- 
putational cycles, the effect of initially specified con- 
ditions is eliminated and eventually the curves for area 
averaged Nusselt numbers overlap. The curve for the 
sixth cycle shows that just after the droplet pinch off 
the heat transfer rate decreases. This can be explained 
by noting that the surface tension acting as restoring 
force pushes down the interface at the peak and in 
turn the interface in the valley region moves upward to 
conserve melt volume. Thereafter, the Nusselt number 
increases again as the peak moves upward and the 
interface in the valley region moves downward. Just 
before droplet pinch off, the heat transfer rate is 
reduced slightly. This is caused by the indefinite 
growth of the interface in the peak region which in 
turn tends to thicken the film layer. 
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averaged over the cell area for different AT. 

Figure 8 shows the dependence of Nusselt number 
based on time and area averaged heat transfer from 
the warm pool to olive oil for different cycles. The 
value for the first cycle is 2.28, which is about 47% 
lower than that obtained for the sixth cycle. The Nus- 
selt number reaches an asymptotic value by the sixth 
cycle. Therefore, numerical simulations must be car- 
ried out for several computation cycles to eliminate 
the effect of arbitrarily specified initial conditions. 

The effect of the temperature difference (A T) on the 
maximum amplitude of the interface is plotted in Fig. 
9. During the period the interface in the peak region 
moves downward, its amplitude is found not to be 
sensitive to AT. This indicates that during the down- 
ward movement of the interface the interfacial velocity 
is determined by the interface height and shape rather 
than the flow condition at the solid surface. It is seen 
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Fig. 9. Variation of disturbance amplitude with time for 

different A T. 

from Fig. 9 that the time at which the upward moving 
portion of the interface attains a certain height 
decreases with increase in AT. As AT increases, the 
rate of growth of amplitude in the exponential region 
increases from 2.21 × l0 -3 to 3.48 x 10 -3. From the 
linear stability analysis for a given growth rate, the 
average film thickness can be obtained for different 
AT. The values are 0.32, 0.35 and 0.37 for ATof  17.5, 
25 and 35°C, respectively. Also, it is found that the 
period for one cycle shortens with the increase in AT, 
which is caused by the fact that higher melting rate 
causes the interface to evolve faster. Figure 10 shows 
the effect of AT on Nusselt numbers based on heat 
transfer coefficient averaged over the cell area. As A T 
increases, Nusselt numbers decreases. The increased 
melting rate leads to a thicker film. This is consistent 
with the increase in the growth rate with increase in 
the temperature difference as is shown in Fig. 9. 

The Nusselt numbers obtained from numerical 
simulation are compared with the experimental results 
obtained by Taghavi-Tafreshi e t  al. in Table 2. At the 
temperature difference of 17.5°C, the Nusselt number 
obtained from the present analysis is 73% larger than 
the experimental result. This over-prediction of the 
heat transfer is possibly caused by the fact that in the 
experiments a stable and continuous melt layer did 
not exist at this small temperature difference as has 
been indicated by Dhir et  al. [4]. At the higher tem- 
perature differences, the Nusselt numbers predicted 
from the present analysis are about 15% larger than 
those obtained in the experiments. The difference 
could be that the interface temperature used in the 
analysis was deduced by Taghavi-Tafreshi et  al. from 
their experiments. As such there is the same uncer- 
tainty as the actual value of the interface temperature 
for which the heat transfer data has been reported. It is 
noted from Table 2 that the Nusselt numbers obtained 
from the present work vary as AT -°23. This is con- 
sistent with the observation made by Taghavi-Tafreshi 
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Table 2. Nusselt numbers based on average heat transfer coefficient and average film thickness 

Nusselt number Average film thickness (dimensionless) 
AT present w o r k  experiment heat transfer hydrodynamics 

17.5C 4.31 2.49 0.23 0.32 
25.0C 3.97 3.49 0.25 0.35 
35.OC 3.67 3.33 0.27 0.37 

et al. [5] that for large temperature difference the Nus- 
selt numbers vary as AT o25 when property depen- 
dence on temperature is neglected. It is also interesting 
to note that the average film thickness based on heat 
transfer, 1/Nu, is about 72% of the average film thick- 
ness that determines the growth rate of the interface 
during the period of exponential growth. 

The shape of the interface during the late period of 
its evolution is compared with the visual observations 
in Fig. 11. The computed interface is very similar to 
that obtained in the experiments of Taghavi-Tafreshi 
et al. except that the computed droplet shape prior to 
droplet breakoff is not as spherical as observed in the 
experiments. 

In this study, the numerical simulation has not been 
carried out up to the actual time of droplet pinch off 
since this would have complicated the grid structure 
which was generated numerically. Hence, it is possible 
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Fig. 12. Variation of disturbance amplitude with time for 

different droplet pinch-off heights for AT = 17.5°C. 

that actually the droplet pinches off at a height differ- 
ent than that chosen in the computations. The effect 
of the pinch-off height on the interface behavior was 
investigated parametrically. Figure 12 shows the 
dimensionless amplitudes of the interface at the peak 
for different pinch-off heights, 6p~nch-o~'. As 6~moh-o~ 
decreases the period for droplet release increases. 
However, during the exponential growth period and 
the period that follows it, the interface growth rate is 
not sensitive to the pinch-off height. Interestingly, for 
all cases the exponential growth rate terminates at 
about the same height of the interface. At ~p~nch-o~l 
= 1.3, the disturbance amplitude obtained from the 
numerical computation matches very well with that 
observed in the experiments. It is quite possible that 
during droplet pinch-off, the liquid stem breaks off at 
two locations. Such a breakoff can lead to formation 
of small secondary droplets. The video films made by 
Taghavi-Tafreshi et al. show such droplets. In the 
present work the stem was assumed to break off at a 
single location. Further work is needed to model the 
formation of secondary droplets, 

(b) 
Fig. 11. Comparison of the interfaces during melting 
obtained with : (a) numerical simulation ; and (b) in exper- 

iments. 

C O N C L U S I O N S  

(1) A numerical simulation of the evolution of the 
liquid-liquid interface during the melting of a 
horizontal substrate placed beneath a heavier 
liquid pool has been carried out. The simulation 
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(2) 

(3) 

is carried out  for several drople t  release cycles. 
By the 6th cycle the interface evolut ion 
behavior  a t ta ins  an  asymptot ic  state. 
Fi lm thickness and  heat  t ransfer  coefficient are 
found to vary spatialy and  temporal ly  dur ing 
the growth  of  the interface. 
The exponent ia l  growth rate of  the interface 
and  the Nusselt  numbers  obta ined  in the pre- 
sent work are within abou t  15% of those 
obta ined  in the experiments  as long as the tem- 
perature  different is not  too small to main ta in  
a con t inuous  melt  layer. Also, the interfacial 
shape predicted numerical ly is similar to tha t  
observed in the experiments.  
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